{{{id=1| G = SymmetricGroup(5) /// }}} {{{id=31| G.order() /// 120 }}} {{{id=2| G.list()(1,2)(4,5) /// [(), (4,5), (3,4), (3,4,5), (3,5,4), (3,5), (2,3), (2,3)(4,5), (2,3,4), (2,3,4,5), (2,3,5,4), (2,3,5), (2,4,3), (2,4,5,3), (2,4), (2,4,5), (2,4)(3,5), (2,4,3,5), (2,5,4,3), (2,5,3), (2,5,4), (2,5), (2,5,3,4), (2,5)(3,4), (1,2), (1,2)(4,5), (1,2)(3,4), (1,2)(3,4,5), (1,2)(3,5,4), (1,2)(3,5), (1,2,3), (1,2,3)(4,5), (1,2,3,4), (1,2,3,4,5), (1,2,3,5,4), (1,2,3,5), (1,2,4,3), (1,2,4,5,3), (1,2,4), (1,2,4,5), (1,2,4)(3,5), (1,2,4,3,5), (1,2,5,4,3), (1,2,5,3), (1,2,5,4), (1,2,5), (1,2,5,3,4), (1,2,5)(3,4), (1,3,2), (1,3,2)(4,5), (1,3,4,2), (1,3,4,5,2), (1,3,5,4,2), (1,3,5,2), (1,3), (1,3)(4,5), (1,3,4), (1,3,4,5), (1,3,5,4), (1,3,5), (1,3)(2,4), (1,3)(2,4,5), (1,3,2,4), (1,3,2,4,5), (1,3,5,2,4), (1,3,5)(2,4), (1,3)(2,5,4), (1,3)(2,5), (1,3,2,5,4), (1,3,2,5), (1,3,4)(2,5), (1,3,4,2,5), (1,4,3,2), (1,4,5,3,2), (1,4,2), (1,4,5,2), (1,4,2)(3,5), (1,4,3,5,2), (1,4,3), (1,4,5,3), (1,4), (1,4,5), (1,4)(3,5), (1,4,3,5), (1,4,2,3), (1,4,5,2,3), (1,4)(2,3), (1,4,5)(2,3), (1,4)(2,3,5), (1,4,2,3,5), (1,4,2,5,3), (1,4,3)(2,5), (1,4)(2,5,3), (1,4,3,2,5), (1,4)(2,5), (1,4,2,5), (1,5,4,3,2), (1,5,3,2), (1,5,4,2), (1,5,2), (1,5,3,4,2), (1,5,2)(3,4), (1,5,4,3), (1,5,3), (1,5,4), (1,5), (1,5,3,4), (1,5)(3,4), (1,5,4,2,3), (1,5,2,3), (1,5,4)(2,3), (1,5)(2,3), (1,5,2,3,4), (1,5)(2,3,4), (1,5,3)(2,4), (1,5,2,4,3), (1,5,3,2,4), (1,5)(2,4,3), (1,5,2,4), (1,5)(2,4)] }}} {{{id=3| G.is_abelian() /// False }}} {{{id=4| G.is_cyclic() /// False }}} {{{id=5| a = G([(1,2), (3, 4, 5)]) /// }}} {{{id=34| a*a /// (3,5,4) }}} {{{id=33| a*a*a /// (1,2) }}} {{{id=8| a^6 /// () }}} {{{id=6| a.order() /// 6 }}} {{{id=7| [b.order() for b in G] /// [1, 2, 2, 3, 3, 2, 2, 2, 3, 4, 4, 3, 3, 4, 2, 3, 2, 4, 4, 3, 3, 2, 4, 2, 2, 2, 2, 6, 6, 2, 3, 6, 4, 5, 5, 4, 4, 5, 3, 4, 6, 5, 5, 4, 4, 3, 5, 6, 3, 6, 4, 5, 5, 4, 2, 2, 3, 4, 4, 3, 2, 6, 4, 5, 5, 6, 6, 2, 5, 4, 6, 5, 4, 5, 3, 4, 6, 5, 3, 4, 2, 3, 2, 4, 4, 5, 2, 6, 6, 5, 5, 6, 6, 5, 2, 4, 5, 4, 4, 3, 5, 6, 4, 3, 3, 2, 4, 2, 5, 4, 6, 2, 5, 6, 6, 5, 5, 6, 4, 2] }}} {{{id=11| G.order() /// 120 }}} {{{id=17| G = DihedralGroup(10) /// }}} {{{id=18| G.order() /// 20 }}} {{{id=12| H = G.center(); H /// Subgroup of (Dihedral group of order 20 as a permutation group) generated by [(1,6)(2,7)(3,8)(4,9)(5,10)] }}} {{{id=19| /// }}} {{{id=9| H.is_normal(G) /// True }}} {{{id=10| H.is_abelian() /// True }}} {{{id=13| K = G.quotient(H) /// }}} {{{id=14| K.order() /// 10 }}} {{{id=15| G.order()/H.order() ## teorema di Lagrange /// 10 }}} {{{id=16| H.order() /// 2 }}} {{{id=20| a = H[1] /// }}} {{{id=35| H /// Subgroup of (Dihedral group of order 20 as a permutation group) generated by [(1,6)(2,7)(3,8)(4,9)(5,10)] }}} {{{id=36| a^2 /// () }}} {{{id=21| ## verifico che H e' il centro di G, cioe' che ogni a in H permuta con tutti gli elementi di G /// }}} {{{id=22| for g in G: a*g == g*a /// True True True True True True True True True True True True True True True True True True True True }}} {{{id=23| G = SymmetricGroup(5) /// }}} {{{id=24| G.is_abelian() /// False }}} {{{id=25| a = G.random_element() /// }}} {{{id=26| H = G.subgroup([a]) /// }}} {{{id=27| H.order() /// 5 }}} {{{id=28| H.is_abelian() /// True }}} {{{id=29| H.is_cyclic() /// True }}} {{{id=30| gap(factorial(300)) /// 306057512216440636035370461297268629388588804173576999416776741259476533176716867465515291422477573349939147888701726368864263907759003154226842927906974559841225476930271954604008012215776252176854255965356903506788725264321896264299365204576448830388909753943489625436053225980776521270822437639449120128678675368305712293681943649956460498166450227716500185176546469340112226034729724066333258583506870150169794168850353752137554910289126407157154830282284937952636580145235233156936482233436799254594095276820608062232812387383880817049600000000000000000000000000000000000000000000000000000000000000000000000000 }}} {{{id=37| /// }}}