Algebra 2 Esercizi 8 - 17 novembre 2023

- 1. Siano A e B due anelli (commutativi unitari) e si consideri l'anello prodotto $A \times B$ (i cui elementi sono coppie ordinate (a,b) e la somma e il prodotto sono definiti sulle componenti). Dire quando un elemento (a,b) è divisore dello zero di $A \times B$ e quando è un elemento invertibile. In particolare, elencare tutti i divisori dello zero e gli elementi invertibili di $\mathbb{Z}_2 \times \mathbb{Z}_4$ e di $\mathbb{Z}_2 \times \mathbb{Z}_3$.
- 2. Sia K un campo e siano $f_1, \ldots, f_n \in K[x]$ polinomi a due a due coprimi. Provare che l'anello quoziente $K[x]/(f_1 \cdots f_n)$ è isomorfo all'anello prodotto $K[x]/(f_1) \times \cdots \times K[x]/(f_n)$ (suggerimento: guardare l'analogo risultato visto nel caso di \mathbb{Z}_m).
- 3. Ricordando che, se K è un campo e $f \in K[x]$ è un polinomo di grado n, allora K[x]/(f) è un K-spazio vettoriale di dimensione n, dire quanti elementi ha l'anello quoziente $\mathbb{Z}_3[x]/(x^3+x+1)$. Più in generale, dire quanti elementi ha l'anello $\mathbb{Z}_p[x]/(f)$ dove p è un numero primo e f è un polinomio di grado n.
- 4. Usando il teorema di Ruffini, trovare i fattori irriducibili del polinomio $x^3 + x + 1 \in \mathbb{Z}_3[x]$. Usando gli esercizi precedenti, trovare i divisori dello zero di $\mathbb{Z}_3[x]/(x^3 + x + 1)$.
- 5. Sia K un campo e $f(x) \in K[x]$ dato da f(x) = x a con $a \in K$. Sia $\phi : K[x] \longrightarrow K$ data da $\phi(u) = u$ per ogni $u \in K$ e $\phi(x) = a$ e poi estesa a tutto K[x] con il teorema di estensione. Provare che K[x]/(f) è isomorfo a K (in questo modo di è provato che K[x]/(f) è un campo, come deve essere, essendo f un polinomio irriducibile).
- 6. Si consideri l'anello $A=\mathbb{Q}[x]/(x^2-9)$, pertanto, gli elementi di A sono della forma [ax+b] con $a,b\in\mathbb{Q}$. Provare che, se $a\neq 0$, allora [ax+b] è invertibile se e solo se [x+b/a] è invertibile mentre, se a=0, allora [b] è invertibile se e solo se $b\neq 0$. Per trovare tutti gli elementi invertibili di A basta allora cercare tutti gli invertibili della forma $[x+\alpha]$, con $\alpha\in\mathbb{Q}$. Trovare quindi quando un elemento di A della forma $[x+\alpha]$ è invertibile e trovare il suo inverso. È possible risolvere l'esercizio in modo diverso, usando gli esercizi 1 e 2?