Corso di laurea in Geologia Istituzioni di matematiche Esercizi n. 1516/29

1. Scrivere il polinomio di Taylor di grado 5 con punto iniziale $x_0=0$ delle seguenti funzioni:

$$f(x) = xe^x$$
, $f(x) = \sin(x) + \cos(3x)$, $f(x) = x^5 + 3x^2 + x + 1$

2. Trovare l'inverso dei seguenti numeri complessi:

$$1 + 2i$$
, $-1 - 3i$, $3i$, -2 .

3. Convertire i seguenti numeri complessi in forma trigonometrica:

$$(1,-1), (1,\sqrt{3}), 2-2\sqrt{3}i.$$

4. Dati i seguenti due numeri complessi:

$$z_1 = 1 + i$$
, $z_2 = -3 - 3i$

- Calcolare il prodotto z_1z_2 ;
- Convertire z_1 e z_2 in forma trigonometrica;
- Calcolare il prodotto di z_1 e z_2 usando la forma trigonometrica (ricordare che se $u_1 = \rho_1(\cos(\theta_1) + i\sin(\theta_1))$ e $u_2 = \rho_2(\cos(\theta_2) + i\sin(\theta_2))$ sono due numeri complessi scritti in forma trigonometrica, allora u_1u_2 vale, in forma trigonometrica: $\rho_1\rho_2(\cos(\theta_1 + \theta_2) + i\sin(\theta_1 + \theta_2))$.
- \bullet Convertire il prodotto z_1z_2 , calcolato nel primo punto, in forma trigonometrica e verificare che quanto trovato coincide con quanto ottenuto nel punto precedente.
- 5. Calcolare tutte le radici (reali o complesse) delle seguenti equazioni:

$$x^{2} + 3x + 1 = 0$$
, $x^{2} + x + 3 = 0$, $x^{3} + 2x^{2} + 5x = 0$, $x^{4} - 4 = 0$

6. Date le funzioni:

$$f(x,y) = e^{xy^2}$$
, $f(x,y) = \frac{\sin(x+y)}{\sin(x) + \sin(y)}$, $f(x,y) = x \log(x^2 + y^2)$

calcolare $\frac{\partial f}{\partial x}$ e $\frac{\partial f}{\partial y}$.