Corso di laurea in Geologia Istituzioni di matematiche Esercizi n. 1617/2/5

Determinare il grafico delle funzioni sotto indicate, rispondendo, per quando possibile, ai seguenti punti:

- Dove è definita la funzione (detto anche insieme di definizione o campo di esitenza). Regole utili:
 - un denominatore non può mai essere 0;
 - se un'espressione è dentro l'operatore di radice quadrata (o una radice ad indice pari), l'espressione stessa deve essere ≥ 0 ;
 - se un'espressione è dentro l'operatore di log, l'espressione deve essere > 0.
- Dove la funzione è positiva e dove è negativa (se fattibile);
- Eventuali punti notevoli;
- dove la funzione è crescente, dove è decrescente, eventuali punti di massimo e minimo relativo e assoluto. Regole utili:
 - Se in un intervallo la derivata della funzione è ≥ 0 , (≤ 0), in quell'intervallo la funzione è crescente (risp. decrescente).
 - Se c'è un punto x_0 tale che in esso la derivata si annulla, mentre alla sua sinistra la derivata è ≤ 0 e alla sua destra la sua derivata è ≥ 0 , allora il punto è di minimo relativo;
 - Se c'è un punto x_0 tale che in esso la derivata si annulla, mentre alla sua sinistra la derivata è ≥ 0 e alla sua destra la sua derivata è ≤ 0 , allora il punto è di massimo relativo;
 - Un altro modo per trovare i punti di minimo e massimo relativo è il seguente: se in x_0 la derivata della funzione si annulla, mentre la derivata seconda (sempre in x_0) è positiva, allora il punto è di minimo relativo; se invece la derivata seconda è nagativa, il punto è di massimo relativo.
- Concavità e convessità della funzione. Punti di flesso. Regole utili:
 - Se in un intervallo la derivata seconda della funzione è ≥ 0, allora in quell'intervallo la funzione ha la concavità rivolta verso l'alto: \(\, \), se la derivata seconda è ≤ 0, allora la funzione ha la concavità rivolta verso il basso: \(\). Non sempre è facile determinare il segno della derivata seconda;
 - Se in x_0 la derivata seconda si annulla, mentre alla sua sinistra la derivata seconda è positiva e alla sua destra è negativa (o viceversa), x_0 è un punto di flesso.

- Eventuali asintoti orizzontali, verticali e obliqui. Regole utili:
 - Solitamente gli asintoti verticali vanno ricercati nei punti in cui si annullano dei denominatori. Se x_0 è un punto in cui un denominatore della funzione si annulla, va studiato il $\lim_{x\to x_0^-}$ e il $\lim_{x\to x_0^+}$ della funzione. Se uno dei due (o entrambi) sono infiniti, la retta $x=x_0$ è un asintoto verticale:
 - un altro caso di asintoti verticali si può avere per quei valori x_0 per cui l'argomento di un logaritmo tende a zero (da destra);
 - gli asintoti orizzontali ci sono se il $\lim_{x\to+\infty}$ o il $\lim_{x\to-\infty}$ della funzione è finito;
 - gli asintoti obliqui vanno cercati calcolando:

$$m = \lim_{x \to +\infty} f(x)/x$$
 e, se esiste m , $q = \lim_{x \to +\infty} f(x) - mx$

- se sia m, sia q esistono e sono numeri finiti, la retta y=mx+q è un asintoto obliquo (stesso discorso per $\lim_{x\to-\infty}$).
- Se si sono trovati assintoti orizzontali, non ci possono essere asintoti obliqui.
- Tutti i dati trovati devono essere coerenti.

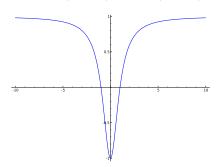
Funzioni.

$$\frac{x^2-1}{x^2+1}, \quad \frac{x^2-5}{x-3}, \quad x^4\log(x), \quad \frac{\sqrt{x^2-1}}{x+2}, \quad (x^2-3)\mathrm{e}^x, \quad (x^2-5)\mathrm{e}^{x^2}, \quad \frac{\sqrt{x}}{x^2+3}$$

Cenno di soluzioni nelle prossime pagine.

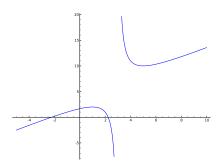
Funzione, derivata prima, derivata seconda e grafico:

$$\frac{x^2-1}{x^2+1}$$
, $\frac{4x}{\left(x^2+1\right)^2}$, $-\frac{4\left(3x^2-1\right)}{\left(x^2+1\right)^3}$



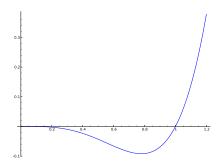
Funzione, derivata prima, derivata seconda e grafico:

$$\frac{x^2-5}{x-3}$$
, $\frac{(x-1)(x-5)}{(x-3)^2}$, $\frac{8}{(x-3)^3}$



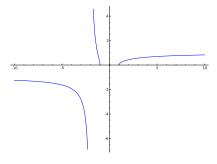
Funzione, derivata prima, derivata seconda e grafico:

$$x^4 \log(x)$$
, $x^3 (4 \log(x) + 1)$, $x^2 (12 \log(x) + 7)$



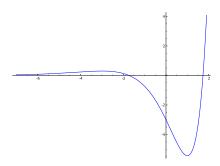
Funzione, derivata prima, derivata seconda e grafico:

$$\frac{\sqrt{x^2-1}}{x+2}$$
, $\frac{2x+1}{\sqrt{x^2-1}(x+2)^2}$, $-\frac{4x^3+3x^2+2}{(x^2-1)^{\frac{3}{2}}(x+2)^3}$



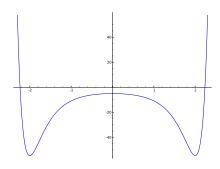
Funzione, derivata prima, derivata seconda e grafico:

$$(x^2-3)e^x$$
, $(x+3)(x-1)e^x$, $(x^2+4x-1)e^x$



Funzione, derivata prima, derivata seconda e grafico:

$$(x^2-5)e^{x^2}$$
, $2(x+2)(x-2)xe^{x^2}$, $2(2x^4-5x^2-4)e^{x^2}$



Funzione, derivata prima, derivata seconda e grafico:

$$\frac{\sqrt{x}}{x^2+3}$$
, $-\frac{3(x+1)(x-1)}{2(x^2+3)^2\sqrt{x}}$, $\frac{3(5x^4-18x^2-3)}{4(x^2+3)^3x^{\frac{3}{2}}}$

