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Timetable: 12 hrs (Part I, Prof. Zennaro), Lectures on Thursday, from 3pm to Spm and Friday,
from 10am to 12am. First Lecture on January 17, 2013. 12 hours (Part II, Prof. Vermiglio),
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Course requirements: it is advisable to have attended a basic course in Numerical Analysis.

Examination and grading: A unique written exam for both Part I and Part II.

SSD: MAT/08 Numerical Analysis
Aim: We present basic numerical methods for initial value problems in ordinary differential
equations and we analyse their convergence and stability properties.

Course contents:

Part I

Existence and uniqueness of the solution and continuous dependence on the data for the initial
value problem y/(z) = f(z,y(x)), y(x0) = yo.

Classical Lipschitz constant and right hand side Lipschitz constant.

General one-step methods; explicit and implicit Runge-Kutta methods.

Definition of local truncation and discretization error for one-step methods and definition of
consistency of order p.

Convergence theorem with order p for one-step methods. Order conditions for Runge-Kutta
methods. Order barriers for explicit and implicit methods.

Variable stepsize implementation. Embedded pairs of methods of Runge-Kutta-Fehlberg type.

Part 11

Introduction to the stability of numerical methods. Stiff problems.

Definition of A-stability, AN-stability and BN-stability of a numerical method.

Analysis of A-stability for Runge-Kutta methods: A-stability regions. L-stability.

Analysis of AN-stability and BN-stability for Runge-Kutta methods. Algebraic stability.

The phenomenon of the order reduction: an example. B-convergence.

Introduction to Linear Multistep (LM) methods. Zero-stability and convergence. A-stability,
A(a)-stability and stiff-stability. Backward differentiation formulas.
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